Mission Possible: Your Assignment is to Validate Output for a Study
Susan Fehrer Coulson, BioClin, Inc., Emporia, KS
Kevin R. Coulson, Emporia State University, Emporia, KS

ABSTRACT
You have been called into your manager’s office and have been told that your next assignment is to start validating the programming in a study that you may not have worked on before. Why does this task have to be done?

It can be a daunting task to start validating a project, any project, if it is one that you worked on or not. And, where is the best place to start?

With examples and best practices on where and how to start, you will have a Mission Possible.

INTRODUCTION
The biopharmaceutical industry is the most heavily regulated industry in the US, even ahead of banking and finance. The Food and Drug Administration (FDA) is the US regulatory body that has approval authority of drugs and devices. The EMEA is the FDA’s equivalent in the European Union and the HPB in Canada. All agencies have requirements that the clinical trials data are correct and the output ‘makes sense’. This paper will refer to the FDA, though the other worldwide agencies have similar requirements.

Validation of the programs creating derived or analysis data sets, CDISC SDTM or ADaM, and the programs creating tables, listings, and figures (TLFs) assures the correctness of subject data for a submission.

The regulations of submitting clinical trials data are not within the scope of this paper. This paper assumes the reader’s familiarity with CDISC SDTM.

WHY VALIDATE
Aside from each programmer and statistician having pride in their work and confident that what s/he produces is of the highest possible quality, there are federal regulations that clinical trials output be validated. It is not uncommon for the FDA to request copies of SAS® programming code as well as SAS Logs. Would you want the FDA to uncover your programming issues?

The FDA has guidances for submitting clinical trials data as well as requirements for clean subject data. Also, company management will have a validation requirement that may vary depending on the task and the possible risk assessment related to data importance.

We all have heard of the Systems Development Life Cycle (SDLC) and, though not all of the SDLC applies to clinical trials output, there are many aspects that do apply, and following the SDLC is the best way to develop software.

Validating programs and output does reduce development costs, especially if validation begins as soon as the data sets have been created. And biopharmaceutical companies want to reduce development time to get their submission to the FDA as quickly as possible. The sooner the submission, hopefully, the sooner the drug or device will be approved and the company will start to recoup the development costs.

Validation provides correct conclusions about the safety and efficacy of drugs and devices. The FDA must approve all protocols for clinical trials conducted in the US. The study output must address each of the study objectives as set forth in the protocol. Without correct conclusions drawn from the tables, listings, and figures, the drug may not be approved.

If the FDA were to find issues or errors, they may come to the biopharmaceutical company to do a full audit, they may levy a substantial fine against the company, and/or they may issue a “refusal to file”. If any of these actions may be attributable to a programmer’s work, s/he may be looking for a new place of employment sooner rather than later.

Make the FDA’s job easier – don’t let them find programming issues or errors. Prove that what was supposed to have been done has been done - correctly.

A good website to check on is: www.fda.gov/oc/gcp for current information from the Bioresearch Monitoring Program (BIMO).
WHERE TO START

All programmers and statisticians must begin a validation project by reading the protocol. Programmers need to read about study design (double blind, single blind, or crossover), study conduct location, study population, safety parameters, efficacy objectives and parameters, laboratory tests, questionnaires. In other words, RTM—read the manual, and in this case, RTP, read the protocol.

After taking time to read the protocol, read the annotated Case Report Form (aCRF). Read how dosing information is collected and note what data are collected in each raw data set. Is the study following the SDTM Implementation Guide (IG)? After reading the aCRF, read the Analysis Plan or Statistical Analysis Plan or Report and Analysis Plan. All three names are for the same document that should summarize the protocol, have programming considerations, and provide layouts for the output TLFs.

VALIDATING DERIVED DATA SETS

If the task at hand is to validate data sets, start with the demography (DM) data set. All other data sets depend on the correctness of the DM data.

The DM data set contains one record per subject. Run a PROC FREQ on the subjects to confirm. And, while writing the DM validation program, run a PROC FREQ on all required variables.

For example:

```plaintext
proc freq data=urstudy.dm;
  tables studyid domain usubjid subjid siteid sex armcd country / list missing nopct;
  title1 'urstudy.dm - required variables';
```

If these required variables are not all populated, open the raw data sets that contribute to DM and run a similar PROC FREQ on the raw data. The STUDYID, DOMAIN, USUBJID, and COUNTRY may or may not have raw data values. Often the DM creation program derives these values. If the study is conducted in only one country, as per the protocol, COUNTRY is often created in the DM program (using ISO format). If these variables have been created in the DM program, follow the company’s operating guidelines, which will likely instruct the validation programmer to meet with the programmer who wrote the DM program.

If any of the expected variables have null values, check with the project manager as it is rare to have null values for them, especially for RFSTDTC. But, when running a PROC FREQ on the expected variables and a message in the SAS log appears stating that the variable is uninitialized, the variable needs to be added in the program creating DM.

NOTE: Variable RFSTDTC is uninitialized.

Display 1. Uninitialized variable message in SAS LOG

Also, part of the DM validation includes the variables in the order in which they appear in the CDISC SDTM Implementation Guide. When running a PROC CONTENTS to see all of the variables in DM, add the option ORDER=VARNUM to print the variables in the order in which they are in the data set. The SDTM IG explicitly states the order in which variables are to be listed in the data set.

For example:

```plaintext
proc contents data=urstudy.dm order=varnum;
  title1 'urstudy.dm -variables in data set order';
```

Manually check the variable labels for spelling and case, and manually check that the variable names are spelled correctly. It is easy to transpose letters. Also confirm that the formats listed in the PROC CONTENTS output exist.

Follow a similar method to validate the data in other data sets—check the required variables, check for the presence of the expected variables. And, check to see if the values make sense. Programmers and statisticians are often not clinicians who can discern potential clinical issues. Look at a PROC PRINT of the data and if many of the subjects have a RFSTDTC value of 2012-11-22 be concerned. Why? That happened to be Thanksgiving Day in 2012. It is possible that many subjects started dosing on that day, but unlikely. Follow the company’s operational guideline for possible fraud if something like this should be found.

Validating a Laboratory (LB) data set, because of the many variables and possible conversions from US to SI units, takes a significant amount of time. There will likely be a table within the protocol listing all laboratory tests, by lab category, required for the clinical trial. Often a lab raw data file will contain many more tests than what are listed in...
the protocol. The FDA requires the tests listed in the protocol to be submitted. It is the option of the biopharmaceutical company to submit additional lab tests.

In the SDTM IG, both original and standard values and units are presented. Check to be sure that the standard units, often the SI units, for each lab test are the same using PROC FREQ of LBTESTCD with Lbstresu, standard units.

For example:
```sas
proc freq data=urstudy.lb;
tables lbtestcd * lbstresu / list missing nopct;
title1 'urstudy.lb - look for all standard units per lab test to be the same';
```

If, for example, creatinine (LBTESTCD='CREAT') has Lbstresu with values of both 'mg/dL' and 'umol/L', add code to the PROC FREQ to get more information. Adding the subject identifier and the visit will provide information that will be valuable to resolve the value for LBSTRESU.

For example:
```sas
proc freq data=urstudy.lb;
tables usubjid * visit * lbtestcd * lbstresu / list missing nopercent;
where lbtestcd = 'CREAT' & lbstresu = 'mg/dL';
title1 'urstudy.lb - subjects with non-standard units for Creatinine';
```

Another common check is to check in the lab file is to check that lab tests (LBTESTCD/LBTEST) have the correct lab categories (LBCAT).

For example:
```sas
proc freq data=urstudy.lb;
tables lbcat * lbtestcd / list missing nopct;
title1 'urstudy.lb - check lab category with lab test name codes';
```

In the protocol, the table of lab categories and tests is the reference listing all of the lab tests that must be performed and reported in the study. To check other lab tests that are not required by protocol, but will be submitted to the FDA, there are online websites with lab tests, units, and normal ranges. One of the better sites for lab tests and conventional and standard units, including conversion units, is: http://www.unc.edu/~rowlett/units/scales/clinical_data.html. Also to note is that each clinical laboratory has its own set of normal ranges, calibrated to their equipment, though the normal ranges that may be found online are ‘general’ values.

Often for a data set as important as the laboratory data, a validation programmer will be asked to re-program the LB data set. As SAS programmers know, there are multiple ways to achieve the same results. At the end of the validation program for LB should be a PROC COMPARE to compare the production LB data set with that created in the validation program.

For example:
```sas
proc compare base=urstudy.lb compare=work.lb;
id usubjid visit lbtestcd;
title1 'urstudy.lb - check lab data set to match work';
```

Some programming groups have a SAS macro in their macro library that scans the SAS log and prints any errors, warnings, and notes. These macros help the validation programmer quickly review the SAS log, though that is not meant to replace a visual inspection of the SAS log.

Remember, the sooner the validation for data sets is complete, the less chance for data issues found in TLFs. It is helpful to have a validation checklist to follow (sample in Appendix A-1).

VALIDATING OUTPUT (TABLES, LISTINGS, FIGURES)

When beginning the task of validating any output, find the layout of the output in the Analysis Plan. Check each output for the correct output table, listing, or figure number, the spelling in the titles, column headers, row headers, axes, and footnotes, and check for correct pagination. In addition, check the order of groupings within the output as the layout sample may have groupings in a different order.

Initially, visually check the output from the production program. If there are columns of data, are they aligned correctly? Are there extra spaces within parentheses? Is there variability in the number of spaces of column
indenting, even the first column? Does the page number print correctly on all pages, even if there are hundreds of
pages, a validation programmer should visually inspect this, especially when the number of pages increases to the
next higher number of positions, eg., from 'Page 99' to 'Page 100' or from 'Page 99 of 243' to Page 100 of 243'.

Visually check subject data listings for content – it has happened in a vital signs table where a faulty merge statement
yielded everyone the same height and weight. Other than the 'merge' SAS LOG statement, these were not flagged
as errors and the production programmer obviously did not check his/her output. There are rare occasions when the
merge note in the SAS LOG is acceptable. If a programmer has this message in the SAS LOG, both data sets in the
MERGE statement must be thoroughly checked to ascertain this message is ok. Because many companies have
SAS LOG checking programs, this message would be flagged. If so, a way to 'get around' this message is to use a
PROC SQL join statement instead.

NOTE: MERGE statement has more than one data set with repeats of BY values.

Display 2. Generally undesirable MERGE statement in SAS Log

A validation programmer may be asked to write a program to create the duplicate output or to program to a
permanent SAS data set of the data going into the output code. In either case, it is tempting to copy and paste from
the production program. This is not validation. This is copy and paste which should achieve the same result. As in
validating data sets, there are many ways to achieve the same output using SAS software.

It is helpful for those starting to follow a validation checklist (sample in Appendix A-2).

HAVE ISSUES BEEN IDENTIFIED?

It is extremely rare to validate derived data sets and/or output and not have issues identified. Most companies have a
procedure in place, described either in Standard Operating Procedures (SOPs) or Operating Guidelines. All
procedures are similar and it is imperative that they be followed until complete resolution has been made and the
data set or output that has been validated is truly issue-free.

The validation programmer will work with statisticians, clinical data managers, other programmers, and project team
members if issues have been identified. Sometimes identified issues are on the validation side and sometimes they
are on the production side. If data issues have been identified, the clinical data managers may have to update the
raw data based on responses to data clarification forms. Perhaps the specifications in the Statistical Analysis Plan
were not clear or misleading, so the project statistician may have to update the document.

CONCLUSION

The assignment of validating derived data sets and/or table, listing, and figure output has been successfully
completed. Each biopharmaceutical company and CRO has documentation of completing validation. There may be
checklists to complete, spreadsheets to complete, and additional data sets and/or output to validate.

Validation provides conclusions about the safety and efficacy of drugs and devices. All of the data and the output
must be correct or the clinical trials conclusions may be misleading or false.

REFERENCES

ACKNOWLEDGMENTS

The author would like to thank Neil Howard, John Gerlach, Angela Ringelberg, Stephanie Lopatosky, Annette Bove,
and Debora Knepp for their wise counsel and their commiseration in validating clinical trials. The author would like to
thank Kevin Coulson for his support and listening ear. (*****I want to add….and, love…..*****)

RECOMMENDED READING

- Base SAS® Procedures Guide
- CDISC SDTM Implementation Guide
- 21 CFR 11
CONTACT INFORMATION
Your comments and questions are valued and encouraged. You may contact the author at:

Name: Susan Fehrer Coulson
Enterprise: BioClin, Inc.
Work Phone: 609.351.3302
E-mail: susanfehrer@yahoo.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.
Appendix A-1

Data Set Validation Checklist Sample

<table>
<thead>
<tr>
<th>Task</th>
<th>Completion Date</th>
<th>Validation Programmer</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read protocol, aCRF, SAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check SAS LOG for errors, warnings, notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check that all formats and subgroups conform to the SAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm all data values accurately represent the raw clinical data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check that all mathematical algorithms detailed in SAP have been correctly applied</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check that all decimals have correct precision as per SAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check derived data values against raw data for subject sample to ensure correct derivation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check data points for values exceeding expected ranges, if appropriate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If SDTM data sets:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check order of variables in data set matches order specified in IG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check that all required variables are present and populated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check that all expected variables are present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check that all variables have correct assignment, numeric or character</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check that controlled terminology has been correctly applied, where necessary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If dual programming is required, include PROC COMPARE to run with production version of data set</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix A-2

Output Validation Checklist Sample

<table>
<thead>
<tr>
<th>Task</th>
<th>Completion Date</th>
<th>Validation Programmer</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check TLF number from Analysis Plan Table of Contents (TOC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm that all titles and footnotes conform to the SAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm that all column headers conform to the SAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm that all row text conforms to the SAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm that order of the output conforms to the SAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm that the output format conforms to the output shells in the SAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm that all range categories, subgroups, and abbreviations conform to the SAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm that statistics, if any, have correct numeric precision as per SAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm that there are no duplicate rows of data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm that data fields are not truncated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm that pagination is correct</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm demographic subject counts across related TLFs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If dual programming is required, check SAS LOG for warnings, errors, messages of uninitialized variables, 'merge' statement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If dual programming is required, run PROC COMPARE with data set produced before output producing procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check data for values outside expected ranges, where appropriate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>