The Use of Metadata in Creating, Transforming and Transporting Clinical Data

Gregory Steffens
Director, Data Management and SAS Programming
ICON Development Solutions
Data Flow Constituents

- Data flow is comprised of transformation and derivation
 - Transformation – restructures, re-attributes and integrates
 - Derivation – creates new values in a target database that do not exist in the source
Data Transformations

- Data transformations comprise a large portion of what we do
 - Extract from data collection/cleaning applications to a standard
 - Integrate ancillary data like lab, randomization, QOL, etc.
 - Creation of analysis database
 - Integrate multiple studies into an integrated database
The DTE

- Therefore, there is a need to define, create, validate and describe databases efficiently and with a consistently high level of quality.
- A combination of reusable code driven by standardized metadata is the answer – the Data Transformation Engine (DTE).
- The code must not make any assumptions of the source and target databases, this is communicated to the code via metadata.
- The metadata structures must be absolutely standardized across all applications and data standards.
- Metadata is populated prescriptively and drives the data flow.
Metadata Constituents

• A standard list of attributes to include in any description of a database or of a data standard
• Put in a standard set of data structures that can be read by the DTE code
• The attributes must be highly structured in order to be usable by DTE code
Standard Database Attributes

- **Data Set Level**
 - Short/long names, data set location, order
- **Variable level**
 - Short/long name, type, length label, primary key flag, format, value list name, suppqual flag, code/decode relationship, order,
- **Valid values**
 - Value list name, start/end value, short decode, long decode
- **Descriptions**
 - Source name, derivation description
- **Row-level attributes**
 - Identical to variable level attributes but for subsets of rows defined by a parameter variable value
- Necessary to fully describe tall-thin data set structures

<table>
<thead>
<tr>
<th>USUBJID</th>
<th>SYSBP</th>
<th>BPSYSLOC</th>
<th>BPSYSU</th>
<th>HEIGHT</th>
<th>HEIGHTU</th>
<th>WEIGHT</th>
<th>WEIGHTU</th>
<th>BMI</th>
<th>BMIU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120</td>
<td>STANDING</td>
<td>mm Mg</td>
<td>185</td>
<td>CM</td>
<td>90</td>
<td>KG</td>
<td>26.3</td>
<td>Kg/m**2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USUBJID</th>
<th>VSTESTCD</th>
<th>VSLOC</th>
<th>VSORRES</th>
<th>VSORRESU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SYSBP</td>
<td>STANDING</td>
<td>120</td>
<td>Mm Mg</td>
</tr>
<tr>
<td>1</td>
<td>HEIGHT</td>
<td></td>
<td>185</td>
<td>CM</td>
</tr>
<tr>
<td>1</td>
<td>WEIGHT</td>
<td></td>
<td>90</td>
<td>KG</td>
</tr>
<tr>
<td>1</td>
<td>BMI</td>
<td></td>
<td>26.3</td>
<td>Kg/M**2</td>
</tr>
</tbody>
</table>
Metadata Structure

• Structured content to enable programmatic access
• Storage structure is separate from publication structure – maximize programmatic access and user friendly access by people
• Also separate from entry format
• Maximize sharing of information within the metadata, e.g. values lists and descriptions
Some Principles of Metadata Design

• Rigorously standardized for all database and standard descriptions, no metadata design change for database types!
• Maximize structured information and programmatic access, e.g. primary keys flagged instead of listed
• Enter once; use many. e.g. descriptions and values
• Derivation logic in descriptions though
Objectives of Metadata

• It is critical to explicitly define the objectives. Many disagreements arise from an unstated difference in assumed objectives.

• Objectives allow evaluation of the success of the metadata design; e.g. retrospective description for esubmission or prescriptive enabler of automation.
Objectives …

- Single metadata design for everything
- Minimize duplicate entry
- Include enough attributes to enable automation
- Separate metadata design from publication and from entry
- Generalize SAS macros, don’t specialize for any specific database standard
Some Automation that is Enabled

- Creating study data requirements from data standards
- Publish data requirements in several formats – pdf, xml, html, etc.
- Publish data requirements with different levels of detail for different user types
- Implement all database attributes from the requirements with one macro call
- Create version 5 transport files with renames and length changes of names and labels
- Create integrated databases
- Create all decode variables with one macro call
More Automation Examples

- Move variables in and out of suppqual domains
- Validate that a database follows a standard and a study requirement
- Compare a new data requirement to a standard or other studies
- Create 0-obs data sets
- Automate TFL shells
- Transform databases from any structure to any other structure … but what else do we need to do that?
• So far, we have metadata that describes databases
• The next step is standard map metadata to define transformation types from one database to another
• Map metadata associates one observation of source metadata with one or more observations of target metadata
• This mapping information is read by SAS macros that generate all the SAS code to create a target database from a source database
• Map metadata should be separate but integrated with metadata
The DTE Code Examples

- %dtmap
 - (source_mdlib=m,source_prefix=raw_,target_mdlib=m,target_prefix=target_,maplib=me,inlib=raw,outlib=sdtm,suppqual_make=yes)

- %mdprint
 - (mdlib=m,inprefix=target_,html=yes,htmlfile=c:\metadata\target_define.html)

- %md2odm
 - (mdlib=m,outxml=c:\metadata\SDTM.xml,StudyName=ICR_SDTM_Standard 3.1.2,ProtocolName=SDTM,StandardName=SDTM 3.1.2,StudyDescription=SDTM Standard,defineVersion=1.0.0,odmversion=1.2,crt_prefix=def)
Advantages of the DTE

• Standards are a means to automation and automation is a means to efficiency and quality
• Much less code invented and validated for individual studies
• Change in skill set requirements for data flow – separate coding skills from database and clinical skills
• More productivity from junior staff
• Faster, better and cheaper.