Dynamic randomization in clinical trials - a review

Sumanth Horabail
Manager - Biostatistics and Programming
Ephicacy Lifescience Analytics Pvt. Ltd.
Trigger for this presentation

- The ICH support the use of dynamic allocation, and the CONSORT statement declares
 “trials that use minimization are considered methodologically equivalent to randomized trials, even when a randomization element is not incorporated”

- Application of Minimization in clinical trials is still less than 2% of clinical trials. (2011)

- Further education for clinicians regarding dynamic allocation techniques and instruction on their smooth incorporation into clinical studies may be beneficial. - Kimberly Fernandes Nov 16, 2005
The basics: or the why part

Randomization

- To have valid statistical conclusions
- To eliminate biases that may affect the assessment of the results of the trial
- The distribution of known and unknown factors that may influence patient outcome should be same across the treatment groups.
Broad classification

- **Static**
 - Predefined and unchanged
 - Do not use information on patients that are already in the trial.
 - For small trials with many stratification factors randomization will not insure balance.

- **Dynamic**
 - Not pre-defined
 - Depend on prior patient information
 - Only the first subject’s group assignment is truly chosen at random

Why Dynamic?
- Treatment balance “required” within each level of stratification factors.
Types of Randomization

• Static Randomization
 – Simple Randomization
 – Permuted Block Randomization
 – Stratified Block Randomization

• Dynamic (adaptive) randomization
 – Biased coin randomization - Efron (1971)
 • Urns method
 – The covariate-adaptive algorithms
 • Minimization
 – Tave’s method (1974)
 – Pocock and Simon method (1975)
 – Frane’s method
 – Dynamic balancing randomization (DBR)- Signorini et al
 – Response-adaptive randomization
 – Atkinson’s DA-Optimality method
 – Zelen’s method, minimization urns designs, optimal allocation techniques
Biased coin randomization

• Efron in 1971
• Method for adjustment of assigning probabilities
• Steps:
 – Simple randomization
 – Adjust when the disparity reaches a pre-specified limit.
 – Group with the least subjects will have high probability of assignment.
 – If balance is achieved, the next subject is randomized to any of the groups with equal probability
Urns method - adaptive biased coin approach

- Drawing balls labeled A or B from an urn, with replacement.

- For the first patient, the urn contains m balls of each type (A and B). The first patient is assigned on the basis of a random draw.

- If the assigned treatment “fails,” a ball of the other type is added to the urn. The next patient therefore has a higher probability of receiving the other treatment.

- If the assigned treatment “succeeds,” a ball of the same type is added to the urn. Thus, the next patient has a higher probability of receiving the same treatment.
Urns method - adaptive biased coin approach

• The most widely studied member of the family of adaptive biased-coin designs

• Less affected by selection bias vs permuted-block randomization methods

• Compromise between designs that yield perfect balance in treatment assignments and complete randomization which eliminates experimental bias.

• Forces a small-sized trial to be balanced and approaches complete randomization as the size of the trial (n) increases.
Minimization (Covariate-adaptive randomization)

- Taves and by Pocock & Simon

- A balance function that is minimized by assigning the new patient to a certain treatment.

- Imbalance score is computed based on characteristics, treatment assignment of current and enrolled patients. The patient is assigned to the treatment with the lowest imbalance score.

- Stratification considers the combinations of factor levels as mutually exclusive groups whereas minimization considers important prognostic factors together

- Minimization could be complete or partial.
Example: Minimization

- In a trial of chemotherapy for breast cancer, with stratification factors of clinic site, estrogen receptor status (ER+ or ER-) and menopausal status

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Trt A</th>
<th>Trt B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Site 2</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>ER+</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>ER-</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Pre-menopausal</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Post-menopausal</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

- Patient no: 35 = Site 2, ER+, Post-menopausal
- Subtotal for Trt A: 10+5+9 = 24; Subtotal for Trt B: 9+6+8 = 23
- So allocate to Trt B
Tave’s method

<table>
<thead>
<tr>
<th>Control group</th>
<th>Sex</th>
<th>Male</th>
<th>Female</th>
<th>Marginal total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass index</td>
<td>Underweight</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Overweight</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Marginal total</td>
<td></td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Sex</th>
<th>Male</th>
<th>Female</th>
<th>Marginal total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass index</td>
<td>Underweight</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Overweight</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Marginal total</td>
<td></td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

- 10th subject = male and underweight,
Pocock and Simon method

- Temporarily assign to the control group,
 - Marginal totals of 3 for male and 2 for underweight category;
- Calculate the absolute difference between control and treatment
 - (males: 3 control - 3 treatment = 0; underweight: 2 control - 2 treatment = 0) and sum (0 + 0 = 0);
- Temporarily assign to the treatment group
 - so marginal totals of 4 for male and 3 for underweight category;
- Repeat step 2:
 - (males: 2 control - 4 treatment = 2; underweight: 1 control - 3 treatment = 2) and sum (2 + 2 = 4);
- Assign the 10th subject to the control group because of the lowest sum of absolute differences (0 < 4).

- Also suggested using a variance approach. this approach calculates the variance among treatment groups.
Frane’s method

• Use P values to identify imbalance among treatment groups: a smaller P value represents more imbalance among treatment groups.

• Steps
 – Temporarily assign the subject to both the control and treatment groups;
 – Calculating P values for each of the covariates using a t test or Chi-square test
 – Determine the minimum P value for each control or treatment group
 – Assigning the subject to the group with the larger minimum P value

• The higher minimum P value ($1.0 > 0.317$), indicates better balance is the control group

• Controls quantitative covariates in addition to categorical ones
Dynamic balancing randomization

- Proposed by Signorini et al

- Tree-based method allowing different levels of imbalance in different strata which ensures a balance for each level of prognostic risk factors (conditional balance) whilst at the same time preserving randomness.

- Eg: 2 strata 2 levels; Gender, age groups in the order. DBR attempts to check treatment imbalance within gender first and then age groups and then the overall.

- No guarantee that balance will be achieved across the different levels for each stratum (marginal)
Response-adaptive randomization

• also known as outcome-adaptive randomization

• Advantage of assigning fewer patients to inferior treatment

• More ethical

• Balancing is a concern again.
Measures of performance to provide comparisons between the approaches

• A loss function-
 – interpreted as squared norm of the imbalance vector.
 – A global imbalance measure

• A forcing index- conveys the degree of randomness.
Implementation Challenges

Three types of errors:

– Errors by investigators;
 • Patient classified to wrong strata
 • Incorrect treatment administered (assigns wrong kit or incorrect treatment admin)

– Errors in the algorithm;
 • Algorithm is not tested using simulations

– Errors caused by a faulty drug supply method.
 • Inadequate supply of study drug at site.
 • Not all study drugs are available at site
Conclusion

- The decision about which method to use for allocating patients should be given as much consideration as other aspects of a clinical trial. Appropriately choosing between methods can affect the statistical tests required and what inferences are possible, while affecting the trial credibility. - G.R Pond 2011 May 24, British Journal of cancer,

- Minimization should be the method of choice in assigning subjects in all clinical trials. - Taves DR, 2010 -Contemp Clin Trials, 2010 Mar 31(2):180-4